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Numerical methods are applied to the helicon boundary value problem. A method of 
solution is described which is completely general and independent of both the geometry 
and the detailed form of the resistivity tensor. This approach is applied to two particular 
geometries under the assumption of a free electron gas model. The first geometry is the 
it&rite plate perpendicular to the magnetic field. In this case excellent agreement with 
the analytic solution of Chambers and Jones is found. For the second geometry, a 
finite rectangular parallelepiped, a solution is found which is qualitatively and serni- 
quantitatively correct. These calculations allow the continued use of helicon experiments 
to measure topological features of Fermi surfaces in metals. In the absence of calcula- 
tions such as those presented, crude approximations to the boundary value solution 
have been used without any way to check their theoretical validity. 

1. INTRODUCTION 

Under certain conditions electromagnetic radiation can penetrate large distances 
into highly conductive media. The media must be permeated by a large, static 
magnetic field, B,, . Alven waves and radio whistlers are examples of this effect in 
ionospheric plasmas. If the plasma is the electron gas of a metal and condition (1) 
is met, the waves are called helicons. 

W<V <W,<W,. (1) 

w is the wave frequency; v is the collision frequency; wC is the cyclotron frequency; 
wg is the plasma frequency. 

In general a conducting medium can be characterized by a resistivity tensor 
p. The constitution relation relating the electric field E and the current density J 
can be written as 

E = pJ. (2) 
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Combining Eq. (2) with Maxwell’s equations we find the helicon wave equation 

V x (pV x B) = -p,(C’B/i%). (3) 

In arriving at Eq. (3) we have neglected the displacement current term in Maxwell’s 
equations. This is valid because helicon frequencies are typically of the order of 
hundreds to thousands of Hertz; displacement currents are important in metals 
only for frequencies in the infrared (lOnHz and above). 

It has been shown [l] that the proper boundary condition at the sample-vacuum 
interface (in the case of a nonferromagnetic metal) is that all three components of 
the field be continuous. 

B vacuum/boundary = B helicon/boundary. 

In vacuum the fields obey the magnetostatic condition 

(4) 

V2B = 0. (5) 

Equation (5) states that the vacuum fields can respond to changes in the 
boundary values brought about by the helicon equation, (3), in times short with 
respect to helicon wave periods. The group velocity in vacuum (that of light, c) is 
much larger than the group velocity of helicon waves (typically 30 cm/set). 

Equations (3)-(5) together formulate a well-posed boundary value problem. This 
boundary value problem has been solved in closed form for only two geometries: 
the infinite cylinder parallel to the static field [2], and the infinite plate perpendicular 
to B,, [3]. 

We now apply numerical methods, specifically the methods of finite differences, 
to the solution of this boundary value problem. The power of this approach is that 
it can handle an arbitrary geometry and resistivity tensor. 

The remainder of this paper will first discuss applied numerical methods. 
Secondly, it will use these methods to reproduce the results of Chambers and 
Jones [3] for the infinite plate geometry. Lastly, we attempt to handle a finite 
rectangular parallelepiped. In making the application to these two geometries, a 
free electron gas model is assumed. 

2. NUMERICAL METHODS 

Finite Difference Representation 

In its simplest form the method of finite differences consists of replacing each 
differential element in a partial differential equation with an appropriate set of 
sums and differences of field quantities. These sets of field quantities are then 
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assembled according to the partial differential equation into a finite difference 
equation. This equation (or set of equations) is then solved for unknown quantities 
and applied iteratively to each lattice point. The lattice is the finite set of points in 
four space that results from making the continous variables X, y, z, and t discrete. 
Lattice points are numbered sequentially along the x, y, and z axes and referenced 
by three integral subscripts 1, J and K, respectively. The time level is referenced by 
the integer N. 

From the theory of numerical methods, a finite difference equation must meet 
three criteria. These are: (1) The finite difference equation must be stable; (2) the 
finite difference equation must converge to the partial differential equation, in the 
limit of infinitesimal step sizes; and (3) the finite difference equation must be con- 
sistent with (correctly represent) the partial differential equation. Ideally, those 
criteria could be used to select a finite difference representation. In general this is 
not possible. In the case of the helicon equation, the stability condition, for 
example, involves a matrix which is very difficult to interpret. To circumvent these 
problems, a representation is arbitrarily selected and implemented. If the solution 
does not numerically diverge, then the other criteria are assumed to be met. This 
point of view is strengthened by a theorem of numeric theory [4]. This method of 
trial and error is used in the course of the work. 

Several finite difference representations were used. The simplest explicit repre- 
sentation 

(dB/dt) = [B(K, N + 1) - B(K, iV)]@T, 
(d2B/dZz) = [B(K + 1, N) - 2B(K, N) + B(K - 1, N)]/(~Z)z 

was found to be unstable for all values of At. 
The explicit scheme which uses 

(6) 

(dB/dt) = [B(K, N + 1) - B(K, N - 1)]/24T (7) 

was also unstable. The simplest implicit scheme was stable and yielded correct 
results. The disadvantage of this implicit method was the amount of time and 
storage required to handle the matrices which must be used. 

The method due to Dufort and Frankel[5] proved most successful and is applied 
to both the infinite plate and the finite plate geometries. The method of Dufort and 
Frankel makes the following identifications: 

(dB/dt) = [B(K, N + 1) - B(K, N)]/AT, 
(8) 

(d2B/dZ2) = [B(K + 1, N) - B(K, N - 1) - B(K, N + 1) + B(K - 1, N)]/(d2)2 

The Computer and Peripheral Equipment 

All calculations were performed on the General Electric 635 Computer at 
Dartmouth. Except where noted, the Time-Sharing system was used. Time- 
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sharing is a highly interactive system with turnaround times of a few seconds. 
Input and output is normally received from and directed to a standard teletype 
machine connected to the computer by a telephone line. The General Electric 
Mark II FORTRAN programming language was used. Because Mark II 
FORTRAN and FORTRAN IV are very similar, the user can debug programs 
under the highly interactive Time-Sharing system. The program can then be 
turned over for FORTRAN IV batch processing if necessary, with little difficulty. 

Plots were generated on a Time-Sharing Devices model C/P 701 plotter/driver. 
This device consists of a digital to analog converter and an x - y recorder. The 
plotter was driven by information produced from the computer by subroutines 
available in the computer’s public library. 

Program Strategy (The algorithm). The solution to the helicon boundary values 
problem consists of several steps. They are: 

Step 1. Specify the initial field distribution, B(x, y, z), at time equal to zero. 
Turn off all drive fields at this time retaining only the static field B, , and the 
internal, constant, helicon field B(x, y, z). 

Step 2. Set the fields to zero outside the sample in order to clear the slate for 
an iterative application of Step 3. 

Step 3. Evaluate the fields outside the sample using the magnetostatic 
condition and the internal fields at the sample surface. (This is a relaxation method.) 

Step 4. Re-evaluate the fields in the sample. This re-evaluation will require 
one application of the helicon equation at each lattice point. The re-evaluation 
will require some information about fields just outside the sample. 

Step 5. Evaluate and print the permeability, p. Average the internal fields 
over space. 

Step 6. If an end condition is met, execute Step 7; otherwise return to Step 2, 

Step 7. Store the field distribution for future use. 

3. APPLICATION TO THE INFINITE PLATE 

The first geometry considered is that of an infinite plate. An infinite plate is a 
sheet with thickness, c, and with infinite length and width. This plate is oriented so 
that the magnetic field, B,, , and the normal to the plate are along the z axis. The 
drive field, b, is in the x direction. The helicon will be detected along the x direction 
after the drive field, b, is turned off. (This is the step-field method for determining 
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the response. The continuous wave response is the Fourier transform of this step- 
field response [3]. The origin of coordinates is chosen at the geometric center of the 
sample (see Fig. 1). 

-Cc- 

t 

b 

Drive Co11 

. 

FIG. 1. Experimental arrangement of a step-field helicon experiment with an infinite plot 
geometry. 

For this infinite plate geometry, field quantities vary only with respect to z. All 
partial derivatives with respect to x and y vanish. The helicon equation (3) then 
simplifies to two coupled equations in the two unknowns B, and B, . They are 

-pz@BPz2) x + P~@~BPz~) Y = - poWP) x, 

--pll(32B/8z2) y + p12(a2B/i3z2) x = -p&‘B/at) y. 
(9) 

As mentioned above, we assume a free electron (jellium) model. A free electron 
gas is described by a resistivity tensor of the form 

P= 
0 
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The parameter R is the Hall coefficient for the electron gas. It is traditional (after 
Chamber and Jones [3]) to define a parameter, U, as 

u = RB,/p. (11) 

u is the tangent of the Hall angle. The current density, J, flows at an angle tan+ 
to E. In the limit u > 1, this angle approaches 7~12 so no energy is lost by Joule 
heating and helicon waves propagate freely. 

The analytic solution to Eq. (9) with Eq. (10) is [3] 

with o, = n2n2RB,,/c2p, and l/rn = n2.rr2p/c2p, . The field B(Z, t) has its x and y 
components combined in this approach as a rotating complex field. B, is the real 
part of B(Z, t). 

If we make a change of variables 

z = znjc 

T = pz2rr2tlp,,c2 
Eq. (12) becomes 

W-6 0 ___ = G *zd i in-1 cos(nZ) e-inZuTe-n2Te 

BP, 0) 
(14) 

Integrating (14) over the sample thickness yields 

The quantity ,u, the experimentally detected quantity, is the (complex) permeability 
for the medium. 

Implementation of the Program 

Substituting the expressions of Dufort and Frankel [S] into the helicon equation 
(3) and solving for unknown quantities we obtain 

= [TERM 3 + TERM 2 + TERM l]/[l + TERM 3 * TERM 31 
(164 

BW + L, 2, K> 

= -[TERM 3 + TERM 2 - TERM l]/[l + TERM 3 * TERM 31 
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FIG. 2. The step-field response of an infinite plate (under the assumption of a free electron 
gas) using the methods of finite differences. 
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where 

TERM 3 = 2uX/(l + 2h) 

TERM 1 = B(N - 1, 1, K)[(l - 2h)/(l + 2h)] 

+ 2h[B(N, 1, K + 1) + B(N, 1, K - 1)1/U + 24 
- TERM 3 [B(N, 2, K + 1) B(N 1,2, - - K) + B(N, 2, K - I)] 

(16b) 
TERM 2 = B(N - 1, 2, K)[(I - 2h)/(l + 2h)] 

+ 2@BB(N, 2, K + 1) + B(N, 2, K - l)l,‘(l + 24 
TERM3[B(N,1,K+1)-B(N-l,1,K)+B(N,1,K-l)] 

and 
h = (LlT/LlZ2). (16~) 

In FORTRAN notation the subscripts N, N + 1, N - 1 refer to time levels, and 
the subscripts K, K + 1, K - 1 refer to the position along the z axis (K = 1 
corresponds to the -(c/2) boundary and K = K MAX corresponds to the +(c/2) 
boundary). The other subscript (1 or 2) refers to the field component (x com- 
ponent or y component, respectively). This scheme is implemented by program 
PROG6 and is available from the authors on request [6]. 

FIG. 3. The continuous wave response of an intinite plate (under the assumption of a free 
electron gas). The Fourier transform of Fig. 2. 
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1-l 

FIG. 4. The step-field response of an infinite plate (under the assumption of a free 
gas) using the analytic solutions. 

electron 



NUMERICAL SOLUTIONS TO THE HELICON BOUNDARY VALUE PROBLEM 147 

For this infinite plate geometry we can simplify the program strategy. This 
simplification is allowed because we know that, in the absence of drive fields, the 
helicon fields go to zero at the boundary. The only solution of (5) which matches 
this boundary condition has the vacuum fields themselves zero for all time. Thus we 
can bypass Steps 2 and 3 of the strategy in accord with 

B(z, t) = 0 for / z 1 > (c/2), t 3 0. (17) 

Comparison of Results 

The quantity p calculated numerically by applying Eqs. (16a), (16b), and (16~) 
and its Fourier transform, the continuous wave response, are plotted in Figs. 2 and 
3 respectively. The analytic solution (14) is plotted in Fig. 4 for comparison. 
Figure 5 is the Fourier transform of the curve of Fig. 4. Several actual field distribu- 
tions at specific times are given in Fig. 6. Here the numeric solution and the analytic 
solution are superimposed. 

These figures show that the numeric solution is a very good approximation to 
the analytic solution. The agreement becomes even better for smaller grid spacing 
and smaller time step. 

-- 
5 IO 15 25 w 

FIG. 5. The continuous wave response of an i&rite plate (under the assumption of a free 
electron gas). The Fourier transform of the analytic solution. 
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FIG. 6. Several representative plots of the exact and the numeric solutions [B(z,t)] to the 
infinite plate helicon problems. The times are indicated on the plots. A free electron gas model 
is assumed. 
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4. APPLICATION TO THE FINITE PLATE 

Formulation of Step 3 of the Strategy. 

The formulation of the problem for finite geometries includes all the aspects of 
the infinite geometry already discussed. A number of other aspects must now be 
discussed. For the finite sample geometry no simplification of program strategy is 
allowed. Outside the sample, in free space, we must satisfy Eq. (5). This consists of 
the solution of three independent, potential-like problems in the variables B, , B, 
and B, . The solution for one of the field quantities, say B, , is found by making 
the Dufort and Frankel substitutions, Eq. (8), into the partial differential equation 
(5). Solving for unknown terms we find 

WV + 1, 1, 4 4 9 ( B(N, 1, Z + 1, 4 K) + BOY 1, Z - 1, J, K) = 
AX2 

+ BW, l,Z,J,K+ l>+B(N, l,Z,J,K- 1) 
AZ2 

+ B(N,l,Z,J+l,K)+B(N,l,Z,J--1,K) 
AY2 I/ 

( L-+2 - 2 ’ 
Ax2 AY2+ AZ2’ ) (18) 

Here Z, .Z, K correspond to the x, y, z position of the point referred to an origin at 
the geometric center of the sample. From symmetry we deal with only the first 
quadrant. Similarly the equations in B, and B, can be solved. The results are 
identical to those for B, with the component subscripts changed to 2 and 3 respec- 
tively. It is only necessary to retain two time levels at once, levels N and N + 1. 
This is an important consideration due to storage limitations. 

Repeated application of (18) to all points outside the sample will yield a better 
approximation to the true solution. This is a relaxation method. Relaxation 
methods are routinely used to solve potential problems. This repeated iteration 
gives a better and better match to the boundary conditions. It has been found that 
after five applications of this scheme, the values near the surface show very little 
change (typically less than l/2 %). These boundary values are just the values 
needed by the helicon equation. 

Formulation of Step 4 of the Strategy 

The helicon equation is expanded in the Appendix. For the jellium model (free 
electron model) terms involving p13 , p23 , pzl and pS2 will not appear. 
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The method of Dufort and Frankel is generalized by the addition of 

i 
B(N, 1, Z + 1, J + 1, K) - B(N, 1, z + 1, J - 1, K) 

@B, - - B(N, l,Z- l,J+ l,K)+B(N, l,Z- l,J- l,K) ! 
dXdY 4dXdY 

(lga) 

With these substitutions, Eqs. (18) and (18a), the helicon equation reduces to 
three coupled equations in the three unknowns B(N + 1, 1, Z, .Z, K) and 
B(N + 1,2, Z, J, K) and B(N + 1, 3, Z, .Z, K). These equations can be solved 
explicitly for the unknowns. Again the new time level (N f 1) can be stored over 
the old time level (N - 1). 

Implementation 

The rectangular sample had dimensions c x b x b. The ratio b/c is called 
the aspect ratio. The c dimension and the static field, B,, , are along the z axis. Point 
densities were selected to represent accurately the field configurations with n = 1, 3 
and 1, m = 1, 3, 5. The integers n, 1 and m are the numbers of half sine waves 
present along the z, x, and y axis, respectively. Although an initial field pattern 
including only these 1, m, n modes is not a uniform field across the sample, it is 
sufficiently complicated to demonstrate the field shapes in minor modes (I, m > 1) 
as well as major modes (I = m = 1). 

Lattice points were chosen so that the point associated with the subscripts 
Z, J, K = 1, 1, 1 was at the origin. The sample had 21, 21, and 11 points along the 
x, y and z axis, respectively. This means that points with subscripts K < 6, J < 11 
or Z < 11 are inside the sample. These 726 inside lattice points are sufficient to 
represent the n = 1,3; I, m = 1, 3, 5 modes accurately. On the other hand, a total 
grid of 3000 lattice points is about as large as it can be and still iterate a fair number 
of times over the whole space. 

TABLE I 

Resources Required for the Finite Sample 

Lattice points Storage Time/iter Time/step 

Inside 
Outside 
Program 

Total 

726 4356 
2742 16452 
- 7000 

3468 17808 

2.1 set 
0.9 set 

approx. 0 

- 

2.1 set 
4.5 set 
0.15 set 

6.75 sec. 

Table I summarizes the resources required for the solution of the finite sample 
boundary value problem and the computer times necessary on a GEG35 system. 
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The elapsed time and field matrix were stored on magnetic tape between runs as 
indicated by Step 7 of the strategy. A run will automatically terminate when a 
chosen number of iterations have been completed. The program was structured in 
this way to make it fit scheduling restrictions. This structuring also allowed the 
results to be checked periodically. An average run was completed after about 
1.5 hours of C.P.U. (Central Processor Unit) time. This scheme is implemented by 
program PROG7 and is available on request from the authors [6]. 

Results for the Finite Sample 

Several runs on the finite sample are reported. The parameters of three typical 
runs are summarized in Table II. 

TABLE II 

Summary of the Parameters Used in Three Runs on the Finite Sample 

Run 1 Run 2 Run 3 

AX 
AY 
AZ 
AT 

h” 
b/c 
C 

0.05 
0.05 
0.1 
0.001 

20 
4 

10 
1 

0.05 
0.05 
0.1 
o.ooo25 

100 
4 

10 
1 

0.05 
0.05 
0.1 
0.004 

20 
4 
3 
1 

The permeabilities computed in each of these typical cases are displayed in 
Fig. 7. In all cases, the time axis is in the same units as were used for the infinite 
plate, TV . A number of runs have shown that there is no correlation between the 
step size in time, AT, and the actual flow of time, so the solution is not being 
driven by the iterative procedure. Runs with a number of different grid spacings 
have demonstrated that convergence is quite fast, but that, in order to represent 
accurately any given sine wave, a minimum of seven points across one half wave- 
length is useful. This criterion set the spatial grid step size. 

The solution for the finite parallelepiped can be tested in a number of ways. 
First, the fit of the solution inside the sample to that outside can be checked at the 
surface. This fit is always better than 1% and could be made arbitrarily small by 
multiple iterations over the exterior point grid. The external potential problem 
converged very satisfactorily. 

Second, each principal mode of the step-field response should decay to l/e of its 
initial value in 2427r cycles (approximately). The argument for such a decay is based 
on the energy expended per cycle in each independent mode. The mode solutions 
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FIG. 7. The step-field response of 3 finite samples. The initial conditions for the curves are 
listed in Table II of the text. (a) and (b) are the response of a 10 x 10 x 1 sample with u = 20. 
(c) and (d) are the same sample with u = 100. (e) and (f) are the response of a 4 x 4 x 1 sample 
with u = 20. 
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do in fact decay in u/2~ cycles of oscillation. Since the time evolution of the field 
patterns obeys few general criteria, it is satisfying that the numerical solution 
agrees with those demands that exist. 

One of the most interesting predictions from experiment [7] is that the field 
patterns inside the parallelepiped should exhibit mode structure in the directions 
perpendicular to the magnetic field. It was because of this experimental result that 
the rectangular parallelepiped geometry was the first studied by the numerical 
method. A mode having mode numbers 1 = m = 3 and n = 1 should have 
(approximately) three half waves inside the sample in each of the directions trans- 
verse to B and one half wavelength along B. The solutions exhibit this behavior, 
but the amplitudes of these modes were quite small. A simple argument shows that 
the relative strengths of these modes should go as 1/12m2, and the numerical 
solution shows even smaller amplitudes especially near the sample edge. Non- 
etheless these minor modes are present in the solution. 

The most sensitive test of the existence of these minor modes would be to run 
the time response out far enough to see the beating of the 1,3, 1 mode with the 
1, 1, 1 mode (as observed experimentally in Ref. [7]). To run the numerical solution 
that long (many times the reciprocal of the difference in frequencies for the modes) 
is prohibitively expensive. 

Figure 7a shows the response of a 10 x 10 x 1 parallelepiped with a u of 20. 
Such a sample might be a 10 x 10 x 1 mm Na slab with an 8000 resistivity ratio 
in a magnetic field of about 10 kG. Such samples have been used in the experimen- 
tal study of the helicon boundary value problem. Figure 7a shows the oscillatory 
response of the permeability p in the x direction over many cycles so that the 
decay of the circularly polarized wave is clear. The decay rate is correct for a u of 
20. Figure 7b shows the first portion of the oscillations in Fig. 7a on a shorter time 
scale. The oscillations from the n = 3 mode, with approximately three half waves 
fitting parallel to B in the sample, appear as small bumps on y1 = 1 oscillations 
(cf. Fig. 4 in Ref. [7]). 

Figure 7c examines the same sample in a higher magnetic field. The parameter u 
is now 100, and the time step AT must be correspondingly smaller in order to 
follow the oscillations. The decay rate is that predicted by the energy argument. 
Figure 7d is a closer look at the first few oscillations of Fig. 7c. The complicated 
bumps superimposed on the IZ = 1 oscillations are the n = 3 and the n = 5 modes. 
These modes decay in the same number of cycles as does the n = 1. 

Figures 7e and 7f show the same sorts of results for a sample of smaller aspect 
ratio. This sample is 4 x 4 x 1 and is the sample in which minor mode structure is 
most apparent. Again the decays of the n = 1 and n = 3 modes are correct. The 
minor modes are too small to be seen in these permeabilities. The calculation of 
permeabilities averages the field over the sample and tends to obscure small 
oscillations in the internal wave fields. 
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5. CONCLUSION 

The methods of finite differences have been applied to the solution of the helicon 
equation for two geometries. In the case of an infinite plate, excellent agreement 
with the analytic solution of Chambers and Jones was found. There are no analytic 
solutions to finite geometry problems so most of the physical checks upon the 
numerical method must be made for the infinite plate. The numerical solution 
passes all these checks. 

One geometry with finite dimensions was considered. This geometry was the 
finite rectangular parallelepiped. Most of the experiments using the helicon to 
investigate the topology of Fermi Surfaces have used such parallelepipeds. This 
present work demonstrates that the boundary value problem for the helicon is well 
enough understood to continue these experiments. Qualitative and semiquantitative 
agreement was found. The numerical method is an extension of that applied to the 
infinite geometry. The approach described is capable of accepting both an arbitrary 
resistivity tensor and an arbitrary geometry. The fact that a boundary value prob- 
lem as complicated as the helicon problem can be handled by a finite difference 
technique without demonstrating instabilities is important. Given enough com- 
puter time, this method of solution can produce the response of any sample to 
arbitrary accuracy. For these reasons the method of finite differences may be 
valuable as an independent check against experiment and as a test of many 
particular models of Fermi surface shape in pure metals. 

APPENDIX: EXPANSION OF THE HELICON EQUATION 

~'x(p~xB)=-~o( aB at IN RECTANGULAR COORDINATES / ) 

V x (pV x B) = -p,,$-; 

where 

1.h.s. 

_ A a& 
-- x( 

a&l A a&i? 
1 ( 

a& 
-----x fY x-z -kz ax -7’ 

ay 1 ( 
* aB, a&! 

i 
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PP x B) = ~21 ip,:: 6;; tqgg$) 

aY 

n 
= x Pll [ i 

a& 
:ui; i 

a&z 
ay - - + Pl2 az --$q+P13(+$+)] 

+p [PII (% - 2) + p22 (2 -$) +P23($g+$)] 

+ 2 ,&I (% - %j + p32 (% -2) +P”“(gL~j]. 

V x (pV x B) 

= LQ p31 [ i 
a2B, 

---+&)+,,(+&+$j+p33(+-$j 
w 

i 

a24 

- p21 ay az -$)-~22($$--$$)-P23(&-+)] 

+9 [Pll(gg - $g) + Pl2 ($ -gg)+P13(&-$&) l 

- p31 ax ay i 

a2& 
-aj -p32(%+) -P33($-$&)I 

+ s [PZl (a -a)+,,,(=-+$,)ip,,($-a) 

i 

a24 
- Pll ay2 

r.h.s. 

aB t3B 
-PO-$= --E.LO*‘-PO at 

Equating r.h.s. and 1.h.s. yields three equations in three unknowns (B, , B, , Bz) 
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